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Definitions of energy density, energy flux and momentum flux for capillary-gravity 
waves are derived by integration of the equations of motion and also by Whitham’s 
averaged Lagrangian method. We then confirm recent results due to Hogan (1979) 
both in the general case and in the case of pure capillary waves. Comparison with the 
Lagrangian results also allows us to give general definitions of ‘wave action density ’ 
and ‘wave action flux’. 

1. Introduction 
In a recent paper Hogan (1979) gives some general results for energy and momentum 

integrals for capillary-gravity waves, and corresponding specific calculations for pure 
capillary waves. In  checking the results for pure capillary waves the present author 
derived them from Whitham’s averaged Lagrangian method, a fairly simple technique 
when the Lagrangian is already known, as it is in this case. The definitions of the various 
quantities in terms of the Lagrangian are derived here in 3 3, but before that the mass, 
momentum and energy equations are derived in 9 2 by integration through the depth 
of the fluid, bringing in the surface tension through the surface pressure, and then 
distributing the surface tension terms into the energy density and energy and 
momentum fluxes. We thus produce integral definitions and averaged Lagrangian 
definitions for the same quantities. 

Comparison of the definitions with Hogan’s general results is made in 3 4, and one 
additional result is given for the S,, component of the radiation stress tensor (see (13) 
for the definition). We also give physical interpretations of the various definitions. 
By looking at the Lagrangian definitions we can define the ‘wave action density’ and 
‘wave action flux’ in terms of integral properties. These quantities have been shown 
to have considerable importance in slowly varying wave-trains. 

Finally in 9 5,  we show how to obtain Hogan’s results for pure capillary waves by 
the Lagrangian method. 

2. Mass, momentum and energy equations 
We define axes (x, y), x = (xl,x2) with y vertically upward; the fluid is bounded 

below by y = - h(x)  and the free surface is a t  y = q(x, t ) ,  with mean value y = b(x, t ) .  
There is a mainstream flow (U(x, t ) ,  0) on which is superimposed a wave motion with 
velocity field (u(x, y, t ) ,  v(x, y, t ) ) ;  vector quantities have horizontal components only. 
The functions h(x), U(x, t ) ,  b(x, t )  and the mean properties of the wave motion are 
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assumed to be slowly varying compared to the variations of u(x, y, t ) ,  v(x, y, t) and 
7(x, t ) .  

The definition of the wave motion is made specific by assuming that the local mean 
horizontal velocity in the wave, ii, is zero. If we further assume that the wave motion 
is irrotational this will be true at all depths. The lack of any vertical component in 
the mainstream flow imposes limitations on the type of flow which is admissible, 
restricting it to a flow which satisfies 'shallow water equations' in which the vertical 
acceleration is negligible. Extension to flows with significant vertical accelerations 
has been considered to some extent by Peregrine (1976, 3 II F) and a rather different 
approach by Hasselmann (1971) also covers this possibility. However, a complete 
development of this case is beyond the scope of the present paper. 

We follow generally the method of Phillips (1966, 3 3), which is to integrate the 
equations of continuity, momentum and energy over the vertical from y = - h to 
y = 7, to take a/at and a/axi derivatives outside the integrals using the appropriate 
theorem, and to use the kinematic surface and bed conditions 

ah 
-(ui+u$)- axi = w  on y =  -h, 

to cancel many of the extra terms which appear. Here the summation convention is 
applied. There are differences both of notation and definition from Phillips, which will 
appear as we go along. 

Starting with the continuity equation 

the integration and derivative exchange gives 

(3) 
ah 

- (q + Ui)-h  - + 2rq-v-h = 0, axi 

where a suffix 7 or - h implies evaluation at  the surface or bed. Using (1) and (2), 
'and noting that U, is independent of y, this becomes 

3 + - ( q ( y  a + h))+-I'I a uidy = 0. 
at axi axi - h  

(4) 

Multiplying by density p and averaging over the waves we then have the mass con- 
tinuity equation 

ab a 
at ax6 

p-+-( (pU$d)+q = 0 

where 

is the mean total depth, and 
d(xi, t )  = b + h 
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is the wave momentum in the i-direction, equal to the mass flux in that direction due 
to the waves. Here the overbar denotes the average over the waves. 

The horizontal Euler equations are written in the form 

(8) 
a a a 
- p (U(+ U i )  +- (p  (u, + Ui) (Uj + U j )  +psi,) (p (Ul, + Ui)  v) = 0, 
at 8x3 

and the same procedure applied. Using (1)  and (2) we find on averaging that 

- a (pu,d) +- aIi + - a (pq, Ujd) + - a (U, Ii + q,4) 
at at ax, ax 

We define 

S!, = (PU,Uj +ps,j)dy- gpgd2Sij (10) 

as the radiation stress tensor for pure gravity waves. This represents the excess mo- 
mentum flux due to the waves, in the absence of surface tension. The definition differs 
from that of Phillips (3.6.12) but agrees (for Sll) with that of Longuet-Higgins (1975, 
(1.6)). Subtracting Ui times equation (5) from (9) we obtain 

as the averaged momentum equation of the wave motion. Here T is the surface tension 
coefficient and J is the sum of the principal curvatures of the surface: 

x ( 1 + -  ( axl @ ) 2  + -  y),)-*. ax2 (12) 

This surface tension term properly belongs in with S!, as a momentum flux due to 
the waves. The appropriate expression for Sij giving both aSfj/xi and i-Ja7/axi is 

8.. = Sf,+S? 
a3 ti 

87 a7 

(13) 
= S B i T j (  zi Gj ) 

l+- -  a7 a7 4 
axk ax, 

Differentiation with respect to x j  will show that this satisfies the equation, and it is 
a tensor since the square root in each term is invariant under rotation of axes. It was 
originally obtained in another way, which we shall see below. 

To find the mean bottom pressure we follow Phillips and write the vertical momen- 
tum equation as 

a a a aP -(pv)+-((p(u,+uj)v)+-((pw2)+-+pg = 0 
at axj aY aY 
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which, applying the usual treatment, becomes 

For periodic progressive waves the mean values of the integrals and of J vanish. 
This is most easily seen by considering a two-dimensional wave. Then 7 is symmetrical 
about the crest, so is u (and therefore Ii does not vanish), but v is anti-symmetrical, 
so the integrals over half a wavelength on each side of the crest cancel. The average 
value of J can be expressed as a function of @/ax1 = q' vanishing because 7' is the 
same a t  each limit (cf. Hogan (1979), equation after (2.17)). Because of the slowly 
varying assumption the waves are locally plane, so the argument applies in general. 
However, we must note that if there is any standing wave component these integrals 
do not vanish. 

Thus I)-h = pgd, i.e. the mean bottom pressure is hydrostatic, and with (13) equa- 
tion (1 l )  becomes 

- 

The energy equation is obtained by taking the scalar product of the momentum 
equations and the velocity, and can be written as 

a 
- at (Q~(uj + uj) (Uj + uj) + +pv2 + pgy) 

a + {(uz + %) (*P(U, + u,) (U, + a,) + *P'u2+P9Y + P)) 

a 
+,{'u(Wj+u,) (u.+uj)+8Pv2+P9Y+P)) 

= 0. 

Integration and the kinematic boundary conditions give 

a7 -TJ- = 0. 
at 

We define the energy density for gravity waves as 

Eg = S q  Qp(u,u, + v2) dy + +pg(T-  b2)  
-h  
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and the energy flux vector for gravity waves as 
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7 
= 1 -h U~(~p(u jU j+v2)+p+pgy)dy-gb I i .  (22) 

Averaging (18) and subtracting from it (&ul,U, +gb)  times ( 5 )  and U, times (11) gives 

The hydrostatic mean pressure on the bed allows the last two terms to cancel. The 
surface tension term has to be re-arranged into appropriate parts E7, FZ and which 
are given by 

ax, 

using (l), with Slj given by (13). 
The averaged energy equation for the wave motion is finally 

av, 5axj av, ax, ” )  - + - ( ~ E + F , ) + s ~ ~ ~ + I , ( ~ + u  aE a - S g -  = 0. 
at ax, 

In the next section we show how to derive equations equivalent to (5)’  (16) and (27) 
from Whitham’s averaged Lagrangian method; then in $ 4  we go on to discuss the 
surface tension terms E7, FZ and SZj and compare them with earlier work. 

3. Whitham’s Lagrangian method 
To find an averaged Lagrangian for Whitham’s method we start from the Lagrangian 

formulation of the water waves equations due to Luke (1967), and add on a surface 
tension term. The Euler equations for 

(where suffices t ,  xi denote derivatives) give both Laplace’s equation and the boundary 
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conditions. The only difference from Luke's paper is in the surface pressure boundary 
condition which follows immediately from the 7 Euler equation 

Now consider a uniform wave-train with waves propagating in the 2,-direction so 
that we can write 

where U,, y, k and b are constants. Substituting into L and averaging over a wave- 
length we have 

Now 

where c = a/k is the phase speed of the waves relative to the flow. The integral term 
in (31) is thus 

(34) 

where T is the kinetic energy, by Longuet-Higgins (1975, (B)). The EQ and 7 terms 
combine to T+ V ,  where V is the potential energy, and (31) becomes 

9 = P ( Y - ~ U , ~ ) d - g p g ( b Z - h z ) + T -  v, (35) 

which may be compared with Whitham (1967, (23)). The extra term ipgh2 can in fact 
be dropped as it does not contribute to any of Whitham's equations. Written in this 
form (35) will hold if the waves now propagate in some other direction. We shall write 

. Y " = T - V ,  (36) 

because i t  is simply a property of the wave motion 

2'" = gW(cr, k, a, d )  (37) 

= . Y W ( w  - ki, k, a, d ) ,  (38) 

where a is a measure of the wave amplitude, and k2 = kiki. Note that 1312~ is the 
frequency which waves of this length would have in the absence of any free stream 
Ui, whilst w / 2 n  is the actual frequency in our axes. For differentiations in Whitham's 
method we have to use the form (38). 
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Whitham gives the following eight equations derived by variational methods from 
0: 

8 9  a 9 w  (i) = 0, i.e. - - - 0, 
aa 

the dispersion relation; 

a 9  a 2 P  
ab ad 

(ii) - = 0, 

(iii) (5) -& (z) = 0, 

i.e. p(y-QU,U,)-pgb+- = 0; 

the integrated mass continuity equation, equivalent to (5); 

a9w ki a9w) 

i.e. - ( - )+g(~~x--x= a a 9 w  a = o ;  
at au 

(39) 

and four consistency equations 

By comparing (5) and (41) we can immediately define 

None of these equations are momentum or energy equations as they stand, although 
the full set are equivalent to them. To derive the momentum equation we consider 

a p w  a s w a g  a ~ a k  a ~ a a  +-- +-- axi au ax( ak axi ad axi 
-=-- 

(noting (39)). Then using = w -  U j k j ,  (42) and (43), we can re-arrange (45) as 

(45) 

equation (46) is 
ar, a a a 9 w  a q  
at axj axi ad -+- (UjIi+Si , )+d---  - +Ii% = 0. 

Deriving 8DLpW/ad from (40) and replacing +/axi from (43) makes (48) exactly the 
same as the earlier momentum equation (16). 
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For the energy equation we similarly consider 

This time rather more algebra is required and we eventually arrive at 

au. i a ~ ~ w a i ~  +s. -%---- = 0, 
%Qx, p ad axi 

with Sij and Ii given by (47) and (44). If we write 

and 

the energy equation becomes 

aE a a q  a (ar) -+- (qE+Fi)+Sij-+-- - = 0, 
at axi axj p axi 

exactly equivalent to (27). 
Note that Whitham’s method assumes that the main stream flow Ui is irrotational, 

whereas the method of $ 2  does not. Also in this section we have that since in the case 
of infinite depth 6421 is independent of d, (40) becomes 

P(Y-iUjUj)-PSb = 0, (54) 

or, when differentiated with respect to x i  and using (43), 

i.e. for infinite depth, variations in the main stream are driven only by variations in 
the slope of the mean free surface, or vice versa. This is equivalent to the assumption 
of hydrostatic pressure in the main stream. 

4. The surface tension terms 
In a recent paper Hogan (1979) defines E ,  F, and S,, for capillary-gravity waves 

and evaluates various formulae, in particular in the special case of pure capillary 
waves in water of infinite depth for which he uses the present author’s exact solution 
(Crapper 1957). 

We now show that his definitions are correct, and give some physical interpretation. 
The formulae (13), (24) and (26) have been found in a purely mathematical way, 

and in the general two-dimensional formulation Sij in particular is extremely com- 
plicated. The present author originally derived them from the un-averaged Lagrangian 
L (28) using formulae from Whitham ((1965), (9), (10)). There, in the absence of any 
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free stream V,, E ,  Fl and Ell (using the symbols temporarily for the un-averaged 
forms) are given as 

aL aL 
a@, 8% 

E = @t-+Tt--L, 

The surface tension term in L is a function of T~~ only, so only the last terms in E and 
Fi and the last two in Sij contribute, giving the required forms. 

To make comparison with Hogan we now assume that the waves are propagating 
in the x direction, with a fax2 = 0. The surface tension contribution to the energy is 

which is the usual formula of T times the relative extension of a surface element. The 
contribution to the flux is 

in agreement with Hogan. If we write this as 

where tan g = &//axl, we can interpret the terms as a transport of energy E' at speed 
u,, plus the rate of working of the surface force T pulling on the fluid to the right of 
the point x1 in a direction making an angle 5 below the negative x1 axis. This may be 
compared with the other part of the energy flux definition (21) which shows a trans- 
port of kinetic energy, a transport of gravitational potential energy and the work 
done by the pressure acting on the fluid on the right. It seems therefore that the 
physical interpretation is correct. 

The surface tension part of the radiation stress (13) is now 
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The S,, component is just the force - r cos C, normalized to be zero for no waves and 
averaged, comparable with the pressure force p in a:,, so again is as expected. The S,, 
term agrees to second order with the definition in Longuet-Higgins & Stewart (1964, 
( 1 7 ) ) .  It arises because the 2-direction force on a line drawn in the surface parallel to 
x, is increased by an amount equal to the increase in the length of the line due to the 
waves. 

Hogan finds the following formulae from these definitions 

I PI = (3T  - 2 V g )  c + B(l, /p + ch), 

S,, = 4 T - 3 V g -  V r + 2 B h ,  

in our notation, where B = $p& is a Bernoulli constant, the waves are progressing 
in the x, direction with velocity c, and Ui = 0, b = 0. We here show that 

S,, = T -  V g -  Vr+Bh (66)  

to complete the set. Considering (10)  we have 

8 2 ,  = f' 13&l-*pgh2+SI,, 
- h  

and from Hogan's equation (2.19) 

PI = % + p c s p  u;dy+F;.  
P - h  

Thus 

S,, = S& + S1,- put dy - SL. 
h 

Now from (26 )  

Fl = 

( 1  + (t)')* 

= c( V' + 811). (73)  

So using (69) ,  (64 ) ,  (65 )  and (73)  we have the result (66 ) .  Considering appropriate 
rotations of axes we then have the general form 

Si, = ( 3 T - 2 V g + B h ) g + ( T -  Vg- Vr+Bh)Sij;  (74)  

the infinite depth gravity wave limit of this result was given by Peregrine & Thomas 
(1979).  

The Lagrangian formulation of $ 2  cannot be checked directly against these results 
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unless a particular Lagrangian is specified. Nevertheless it can easily be seen that for 
consistency we require 

aLZw 2T - - _ *  - 
aa a ' I 

For these x,-direction waves equation (40) shows that 

which in fact agrees with Hogan's definition of B, with py as the Bernoulli constant 
of a steady flow on which these waves are stationary. The results ( 7 5 )  are also con- 
sistent with a differential relation for dLZw proved by Longuet-Higgins (1975, (4 .17)) .  
Although his proof omits surface tension, i t  is easy to see that if i t  is included the 
terms actually cancel very early in the proof, thus providing a further check on our 
results. 

The quantity &.YW/aa is usually known as the 'wave action density' and (for 2,- 
direction waves) - adPw/ak  is the 'wave action flux '. Through Whitham's equation 
(42) these quantities are seen to have direct importance in slowly varying situations, 
and (75) gives physical meaning to them in a general nonlinear context. For small 
waves these definitions agree with those of Whitham (1974, (16.82), (16.83)). For 
deep-water gravity waves they have in fact been given previously by Peregrine & 
Thomas (1979). It is interesting to  note that they depend only indirectly on the surface 
tension. 

5. Pure capillary waves in infinite-depth fluid 

use the averaged Lagrangian 
To compare the results derived from Whitham's theory with those of Hogan we 

(77) 

originally derived by Lighthill (1965) using the results of Crapper (1957). The differen- 
tiations are straightforward, and then substitution of the formula 

pa2 r2k3 
k3 pa2 

T w  = 27---- 

also derived from Crapper (1957), is seen to lead directly to Hogan's results for I,, El 

In checking Hogan's results the present author originally derived all of them by this 
method. It is generally speaking much simpler than the integrals in the general 
definition of S,, and Fl, although of course the energy integrals have to be calculated 
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to give 9". With the work of Cokelet (1977) it should be possible to make a good 
approximate Lagrangian for gravity waves, and the formulae for the various integral 
properties will make checks on its accuracy, through the derivatives with respect to 
v, k and d. 
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